CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page	2	Mark Scheme	Syllabus	Paper
~		Cambridge IGCSE – October/November 2014	0620	32
1 (a)	foo	dstuffs or drugs		[1]
(b)	(i)	simple distillation fractional distillation or diffusion fractional distillation filtration or evaporation chromatography		[5]
	(ii)	 M1 dissolving M2 filtration M3 evaporation or heat (to crystallisation point) M4 crystallisation or allow leave to cool 		[4]
		or M3 crystallisation M4 filtration		[+]
		OR: Adding to H ₂ SO ₄ method		
		M1 Add excess mixture to acid (or until no more dissolves)M2 Filtrationor		
		M1 Add excess acid to mixture M2 With heat		
		M3 evaporation or heat (to crystallisation point) Stop marking if he M4 crystallisation or allow leave to cool or	eated to dryn	ess.
		M3 crystallisation M4 filtration		
				[Total: 10]
2 (a)		$i^{+} + 3e \rightarrow Al$ ecies (1) balancing (1)		[2]
(b)	(i)	$AlCl_3 + 3Na \rightarrow 3NaCl + Al$ species (1) balancing (1)		[2]
	(ii)	M1 electrolysis		[1]
		M2 molten sodium chloride		[1]
		or M1 Add named more reactive metal (e.g. K) M2 Molten sodium chloride		
(c)	(i)	bauxite		[1]
	(ii)		le / basic oxi	
		not		[1]
		M2 Filter COND on M1		[1]

Pa	age 3	3	Mark Scheme	Syllabus	Paper
	•		Cambridge IGCSE – October/November 2014	0620	32
		(iii)	Any two from: Lowers (working) temperature or lowers mpt (of mixture) increases conductivity reduces cost OR energy need		[2]
		(iv)	M1 = Any one correct equation.		
			M2 Oxygen mark Oxygen comes from oxide ions or $2O^2 \rightarrow O_2 + 4e$		
			M3 Carbon dioxide mark Anode reacts with oxygen / burns to form CO_2 or $C + O_2 \rightarrow CO_2$		
			M4 Carbon monoxide mark Anode reacts with limited oxygen / incompletely burns to form carbo or $2C + O_2 \rightarrow 2CO$ or CO_2 reacts with the anode to form carbon monoxide or $CO_2 + C \rightarrow 2CO$	on monoxide	e
			M5 Fluorine mark Fluorine comes from cryolite or fluoride ions or 2F \rightarrow F ₂ + 2e		[5]
	(d)	(i)	Has an impervious or non-porous or passive or unreactive or prote	ctive oxide	layer [1]
		(ii)	Any two from: good conductor of heat high melting point Unreactive towards foods		[2]
3	(a)	(i)	C_4H_8 only CH_2 (Allow C_1H_2)		[2]
		(ii)	Any unambiguous structural formula of methyl cyclopropane or but- methyl propene	1-ene or bu	t-2-ene or [1]
		(iii)	M1 same molecular formula		[1]
			M2 different structural formulae or different structures or different arrangement of atoms		[1]
		(iv)	If 'No': one an alkane, the other an alkene or one is saturated / has single bonds, the other is unsaturated / has a ignore: references to the 'functional group' If 'yes' both alkanes or both saturated	double bor	nd
			ignore: references to the 'functional group'		[1]

Page 4		Mark Scheme	Syllabus	Paper
		Cambridge IGCSE – October/November 2014	0620	32
(b)	(i)	M1 Action of heat or catalyst or thermal decomposition (on an a Ignore steam. Ignore pressure.	lkane)	[1]
		M2 Long-chained molecules or alkanes form smaller molecules forms smaller alkenes (or alkanes)	(not smaller fr	action) or [1]
	(ii)	C ₁₀ H ₂₂		[1]
(c)	(i)	M1 Correct structure of one repeat unit		[1]
		M2 Continuation bonds COND on M1		[1]
		M3 use of brackets and subscript 'n' COND on M1 and M2		[1]
		$\frac{\begin{pmatrix} H & H \\ I & I \\ CH_3 & CH_3 \end{pmatrix}}{\begin{pmatrix} I & I \\ CH_3 & CH_3 \end{pmatrix}} = 3 \text{ marks}$		

(ii)	dibromoethane or 1,2-dibromoethane	[1]

4 (a) M1 brass

M2 copper **COND** on M1 [1]

(b)	(i)	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$	[2]
		species (1) balancing (1)	

(ii) Manufacture of sulfuric acid
 or bleach or making wood pulp or making paper
 or food or fruit juice or wine preservative
 or fumigant or sterilising

[1]

[1]

[1]

[2]

Page 5		5		Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0620	32
1	(c)	(ii)	$Zn^{2+} + 2e \rightarrow Zn$		[1
			oxygen or water Allow O_2 and H_2O if no name seen		[1
			sulfuric acid Allow: H₂SO₄ if no name seen		[1
ŀ	(d)	(i)	from zinc to carbon (clockwise direction on or near the wire)		[1
		(ii)	to allow <u>ions</u> to flow		[1
		(iii)	oxidation and loss of electron(s) or increase in oxidation number/state		[1
			reduction and decrease in oxidation number/state or gain of electron(s)		[´
					[Total: 13
	(a)	(i)	M1 Contain carbon, hydrogen and oxygen (only)		[^
			M2 hydrogen and oxygen is in a 2:1 ratio (or in the same ratio as wa	iter)	[´
		(ii)	M1 -O- linkage		[´
			M2 3 monomer units with 3 blocks and 3 Oxygen atoms Cond		[^
			-0-0-0-0- =1 mark		
	(b)	cata	alyst		['

biological or protein

5 (c) (i) C A B

ABC = 1 ACB = 1 BCA = 1 CBA = 1 BAC = 0Allow 70 for C, 40 for B and 20 for A

(ii) M1 Energy mark: at higher temperature particles/molecules more have more energy or move faster [1]

M2 Collision frequency mark: collide more frequently/often **or** more collisions per unit time **or** higher rate of collisions. [1] Ignore: 'more collisions'

M3 Collision energy mark: more molecules have enough energy to react or more collisions are above activation energy or successful [1]

Pa	age 6	6	Mark Scheme	Syllabus	Paper
	Ŭ.		Cambridge IGCSE – October/November 2014	0620	32
		(iii)	C rate zero or enzymes denatured		[1]
					[Total: 12]
6	(a)	mal	king fertilisers or pickling metals or making fibres or making phosphoking dyes or making paints/pigments/dyes or making paper making ergents or tanning leather or battery acid.		
	(b)	(i)	add water (to yellow solid or to (anhydrous) iron(II) sulfate or to Fes	SO ₄ or to pr	oducts [1]
			goes green		[1]
		(ii)	M1 Sulfur trioxide reacts with water to make sulfuric acid or equati	on	[1]
			M2 sulfur dioxide reacts with oxygen to form sulfur trioxide or equa	ation	[1]
		(iii)	M1 = 2.07 Allow 2.1 or 2.06667		
			M2 = 62.8.g		
			M3 =(M2/152 =) 0.41(3)		
			M4 (=M1/M3) rounded to the nearest whole number \times = 5		[4]
6	(c)	(i)	nitric acid or nitric(V) acid or HNO ₃		[1]
		(ii)	$2KNO_3 = 2KNO_2 + O_2$ Species (1)		[2]
			Balance (1)		[Total: 12]